Lab Report Heading

Top right corner-

Hour-group Name Date Group member's names

2-9 Ima Gooden 9/6/19 Hugo First Ida Nough

Observations What, not Why Simply a record of what was observed (data) Made DURING the experiment

Reporting Data...

- Data implies measurements taken during the procedure
- CALCULATED VALUES ARE NOT DATA!
- Data should be reported in table form whenever possible
 Not paragraph form

Conclusions • Why, not What A statement of the cause behind the event Made AFTER the experiment

Don't forget to return your Lab Safety Contracts signed by yourself and a parent or guardian as soon as possible.

Science

- from Latin *scientia*, from *scire*
- `knowledge'
 - -conscience = with knowledge
 - -omniscience = all knowledge
 - prescience = knowledge beforehand

 Science is, by definition, a study of "what is known"

Scientific Thinking

logical and rational
 law of causality
 law of noncontradiction

characterized by both <u>inductive</u> and <u>deductive</u> reasoning

Inductive reasoning is the primary methodology of science, that is, it is the **Scientific Method**

- 1. State question or problem
- 2. Conduct research
- 3. Form hypothesis
- 4. Conduct experiment
 - should test the hypothesis
- 5. Analyze results
- 6. Form conclusion (Theory)

Induction starts with concrete data, then draws generalized conclusions (theories) from that data.

Example:

Data: in general, the universe appears to be expanding as time goes by

Conclusion: the universe must have at one time been a single point and is expanding out from that point *Induction has a key feature* : you can have true premises and false conclusions.

 Even if all of your evidence suggests something is true, your conclusion does not follow as a *logical necessity*.

In simple language: you may be wrong

Whenever new data arise, theories have to change accordingly.

Deductions are based on true premises, and drawn from logical necessity

Example:

Premise A: Aqueous solutions of Cu²⁺ are blue

Premise B: Dissolving CuSO₄ in water produces an aqueous solution of Cu²⁺

Conclusion: Dissolving CuSO₄ in water produces a blue solution

Deduction is also the methodology of math

- Deduction is powerful in its certainty, but isn't always possible
 - Depends on the availability of premises known with certainty
- Most of our knowledge is gained through inductive reasoning
- Inductive thinking gives rise to THEORIES

Deductive thinking results in LAWS

Theory
an explanation of how or why that has been successfully tested

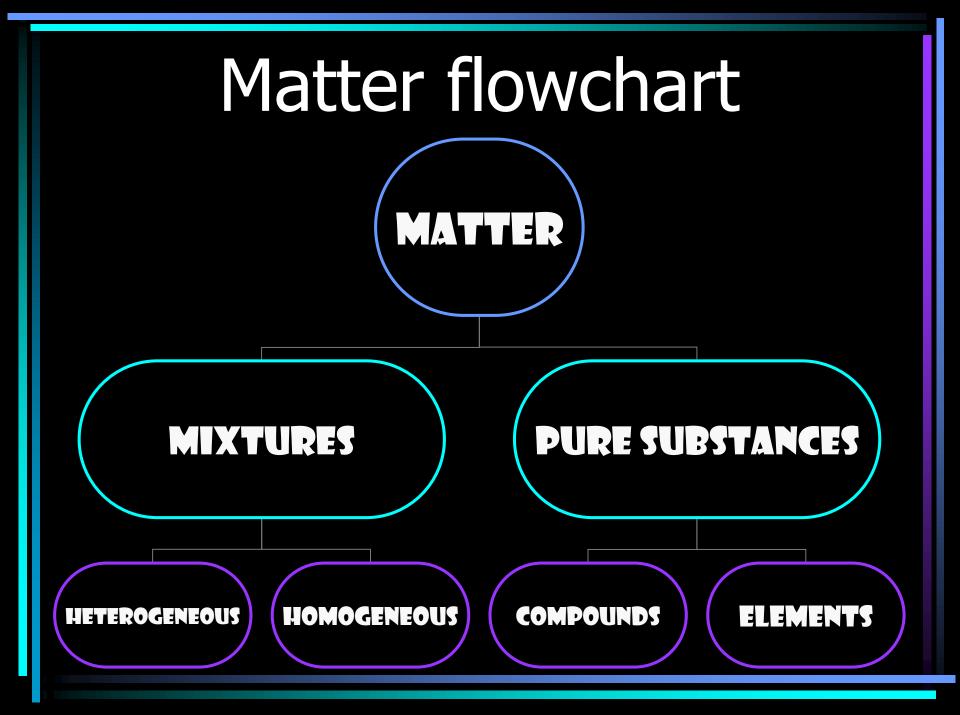
• <u>can never be proven</u>

 are *accepted* as true until disproven

provide predictive powers

Law

- describes or states the "what", <u>doesn't explain</u>
- a summary of the results of many observations or experiments
- often math equations


Chemistry

The study of matter, its properties, and the changes it undergoes.

matter Anything that has mass and takes up space Three types 1. Elements Pure substances (aka "chemicals") 2. Compounds 3. Mixtures

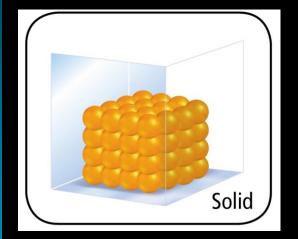
What does pure mean? • In chemistry, pure \neq "clean" • Pure means -only one substance -unmixed There is no such thing as a "pure mixture"!

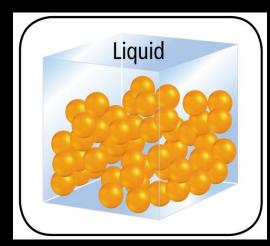
Types of mixtures Determined by how well the substances are mixed together **1.** Homogeneous mixtures Uniform throughout 2. Heterogeneous mixtures Non-uniform

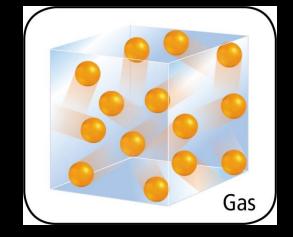
properties The characteristics that describe or help identify a substance Can be chemical or physical

Chemical properties Describe how a substance reacts chemically • Examples: -Combustibility -Rusting (oxidation) -Reaction with an acid

Chemical properties • Key idea: Chemical properties can only be observed by changing the substance into a new, different substance


Physical properties Describe the appearance of a substance Can be observed without


Can be observed without changing the substance into a new, different substance


Physical properties - examples Melting point Color Boiling point Odor Physical state Size -Solid Mass -Liquid Weight -Gas density

solubility

Physical States of matter

 Intensive physical properties \rightarrow Do not depend on the sample size \rightarrow examples: temperature, density, color, solubility, physical state, melting/boiling point Extensive physical properties are sample size dependent examples: mass, volume, size

Chemistry is the study of... Matter, its properties, and the

<u>Changes</u> it undergoes
There are two types of changes
-Chemical
-physical

Chemical changes

- Result in the formation of new substances
- Examples
 - -Elements \rightarrow compounds
- Burning, oxidation, acid reactions
 Usually called "chemical reactions"

Chemical changes Indicators

- 1. Changes in color
- 2. Changes in odor
- 3. New physical state formed (not just melting or freezing)
 - a) New solid precipitation
 - b) Bubbles new gas being produced
- 4. Change in temperature without using outside mechanism (burner, freezer)

Reaction Notation Reactants -> Products physical state often indicated \checkmark solid = (s) ex: ice = H₂O_(s) \checkmark liquid = (I) ex: steam = $H_2O_{(a)}$ \checkmark gas = (g) \checkmark aqueous = (aq) = dissolved in water

Physical changes Do not result in the formation of a new, different substance Changes of physical state are physical changes

Example: paper changes

Day 1 Lab – how to finish

- 1. List your observations (done)
- 2. Based on your observations, <u>conclude</u> whether there was only a physical change or both a physical *and* chemical change, or neither – <u>cite evidence</u>!
- 3. Staple to homework and hand in with them

Collaboration

Get observations for the procedures that your group did not do from a group that did!

Don't forget to return your Lab Safety Contracts signed by yourself and a parent or guardian as soon as possible.

Lab Report Heading

Top right corner-

Hour-group Name Date Group member's names

2-9 Ima Gooden 9/6/19 Hugo First Ida Nough

Chemistry

The study of matter, its properties, and the changes it undergoes.

matter Anything that has mass and takes up space Three types 1. Elements Pure substances (aka "chemicals") 2. Compounds 3. Mixtures

elements

Matter that cannot be broken down into simpler substances by ordinary chemical means
Example – "Lego" blocks

elements

- There are 118 known
- There are 94 naturally occurring
- All have unique name and symbol
 - -1 letter = capitol
 - -2 letters = cap w/ lower case
 - -ex: B, C, Ca, Na

Some element names and symbols do not match - Latin names

- Na = sodium
- Latin: natrium
- K = potassium
- Latin: kalium
- Au = gold
- Latin: aurum

- Ag = silver
- Latin: argentum
- Hg = mercury
- Latin: hydrargentum
- Fe = iron
- Latin: ferrum

Some element names and symbols do not match - Latin names

- Pb = lead
- Latin: plumbum
 other: stibium
- Sn = tin
- Latin: stannum
 Swedish
- Cu = copper
- Latin: cuprum

- Sb = antimony
- W = tungsten

Names and symbols of the elements

 You will not have to memorize the names and symbols of *all* the elements For now — start learning the names and symbols of elements 1 - 30 (H - Zn)

A substance made of two or more elements chemically combined

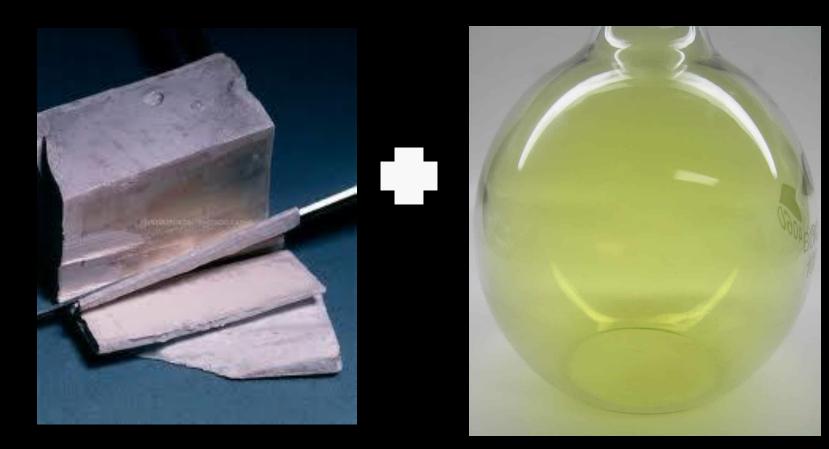
 The properties of a compound are different than the properties of the elements that make up the compound

https://dir.indiamart.com/mumbai/sodium-metal.html

Chlorine (Cl_2)

https://dir.indiamart.com/mumbai/sodium-metal.html

Chlorine (Cl₂)



https://dir.indiamart.com/mumbai/sodium-metal.html

https://swh-826d.kxcdn.com/wp-content/uploads/2011/06/Chlorine_gas.jpg

Chlorine (Cl₂)

https://dir.indiamart.com/mumbai/sodium-metal.html

https://swh-826d.kxcdn.com/wp-content/uploads/2011/06/Chlorine_gas.jpg

sodium chloride NaCl (table salt)

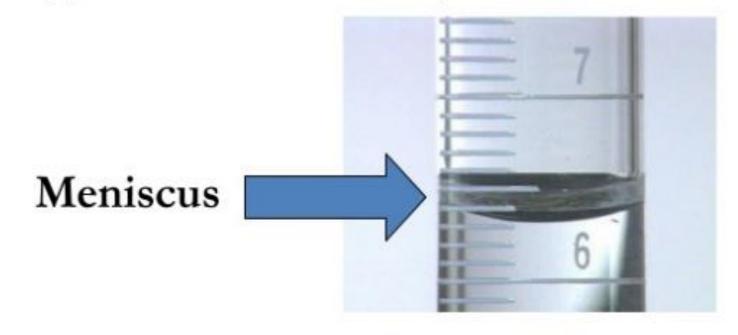
https://sc01.alicdn.com/kf/UT8L0VEXThXXXagOFbXd/Sodium-Chloride.jpg

mixtures

- Elements and compounds (chemicals) *blended together*, but <u>not chemically combined</u>
- The chemical properties of the substances do not change
- No new chemicals are produced

Mixtures are separated PHYSICALLY

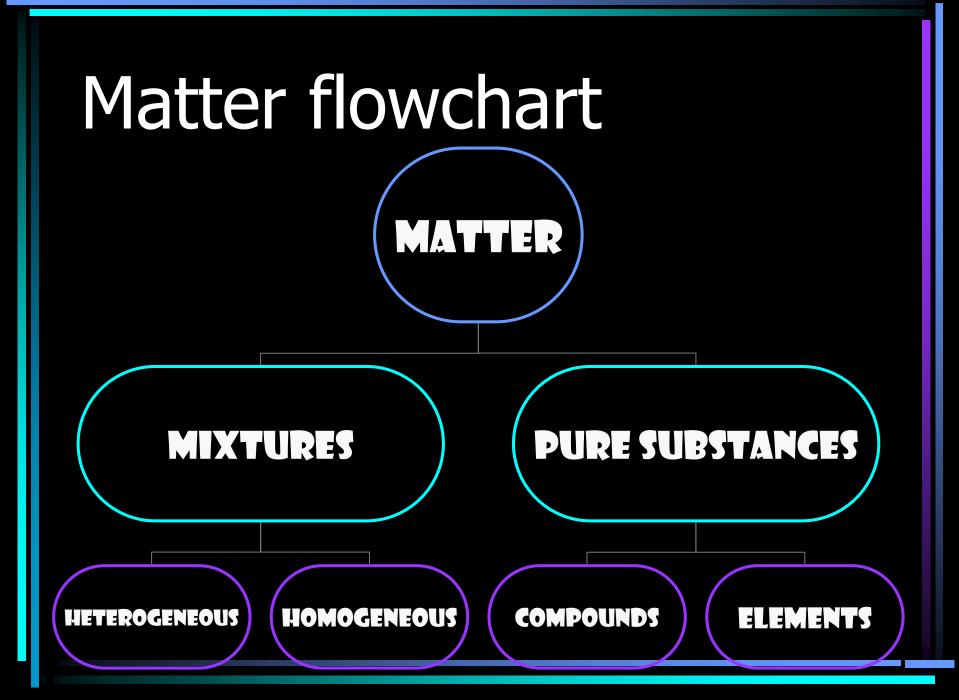
-these are all physical changes


- Filtration
 - based on differences in solubility
- Distillation
 - Based on differences in boiling points
- Crystallization
 - Separate pure solids out of a solution
- Chromatography
 - Based in differences in flow rate through special papers or substances

How to read the volume of a liquid in a graduated cylinder

How to read the volume of a liquid in a graduated cylinder

The **meniscus** is the U-shaped "the upper surface of a liquid in a tube". How to read the volume of a liquid in a graduated cylinder


The **meniscus** is the U-shaped "the upper surface of a liquid in a tube".

Chemistry

The study of matter, its properties, and the changes it undergoes.

matter Anything that has mass and takes up space Three types 1. Elements Pure substances (aka "chemicals") 2. Compounds 3. Mixtures

Mixtures are separated PHYSICALLY

-these are all physical changes

- Filtration
 - based on differences in solubility
- Distillation
 - Based on differences in boiling points
- Crystallization
 - Separate pure solids out of a solution
- Chromatography
 - Based in differences in flow rate through special papers or substances

Please switch from the fill-in-the-blank sheets to your notebooks now...

ENERGY •The ability to do work • Work = Force xdistance in the direction of the force

A few examples of some forms of energy... Nuclear Electrical Solar (light) Chemical Heat mechanical

Types of energy Potential -Related to making and breaking attractive forces -ex: chemical Kinetic -Due to motion -ex: heat

Chemical reactions always involve energy changes!

What is the connection?

$\mathbf{E} = \mathbf{m}\mathbf{C}^2$

• E = energy• m = mass

• C = the speed of light

Chemistry

The study of matter, its properties, and the changes it undergoes.